淡江大學機構典藏:Item 987654321/50345
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3947451      線上人數 : 619
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/50345


    題名: Single drop microextraction using silver nanoparticles as electrostatic probes for peptide analysis in atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry and comparison with gold electrostatic probes and silver hydrophobic probes
    作者: Sudhir, Putty-reddy;Shrivas, Kamlesh;周子聰;Zhou, Zi-cong;Wu, Hui-fen
    貢獻者: 淡江大學物理學系
    日期: 2008-10-01
    上傳時間: 2010-08-09 15:44:34 (UTC+8)
    出版者: Wiley-Blackwell
    摘要: Single drop microextraction using tetraalkylammonium bromide coated silver nanoparticles (SDME-AgNPs) prepared in toluene has been successfully applied as electrostatic affinity probes to preconcentrate peptide mixtures in biological samples prior to atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry (AP-MALDI-MS) analysis. This approach is based on the isoelectric point (pI) of peptides and surface charge of AgNPs. Using the SDME-AgNPs technique, from a peptide mixture, Met- and Leu-enkephalins (Met-enk and Leu-enk) were extracted into a droplet of toluene containing AgNPs, but not the neutral peptides (gramicidins). The best peptide extraction efficiency for SDME-AgNPs was observed with the optimized parameters: extraction time 2 min, sample agitation rate 240 rpm, and sample pH 7. The limits of detection (LODs) of the SDME-AgNPs/AP-MALDI-MS technique for Met-enk and Leu-enk peptides were 160 and 210 nM, respectively. Furthermore, the application of the technique has been shown for the analysis of peptides from a sample containing high matrix interferences such as 1% Triton X-100 and 6 M urea. Finally, this approach has been compared with the SDME-AuNPs technique and the results have clearly revealed that the SDME-AgNP affinity probe exhibits higher affinity to extract the sulfur-bearing peptide (Met-enk). We also compared this electrostatic affinity probe of AgNPs with the previously demonstrated hydrophobic affinity probe of AgNPs and found that the electrostatic probe can greatly reduce the extraction time from 1.5 h to 2 min. This is due to the fact that electrostatic attraction forces are much stronger than the hydrophobic attraction forces. Therefore, we concluded that the electrostatic affinity probe based on SDME-AgNPs coupled with AP-MALDI-MS is a high-throughput technique for the analysis of low-abundance peptides from biological samples containing complex matrices.
    關聯: Rapid Communications in Mass Spectrometry 22(19), pp.3076-3086
    DOI: 10.1002/rcm.3710
    顯示於類別:[物理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0951-4198_22(19)p3076-3086.pdf443KbAdobe PDF278檢視/開啟
    index.html0KbHTML45檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋