English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7383467      線上人數 : 73
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46963


    題名: 微分方程具非線性邊界參數之譜及節點反問題(台俄國合計畫)
    其他題名: Inverse Nodal and Inverse Spectral Problems for Differential Equations with Nonlinear Dependence on the Spectral Parameter
    作者: 謝忠村;羅春光
    貢獻者: 淡江大學數學學系
    關鍵詞: 微分方程;邊界值問題;譜理論;節點;非線性反問題;differential equations;boundary value problems;spectral theory
    日期: 2009
    上傳時間: 2010-04-15 15:44:45 (UTC+8)
    摘要: 這是一個關於微分算子的譜理論研究計畫。這個計畫主要的目的是從微分算子的譜 或者是固有函數的節點去反推非線性微分算子的係數。我們計劃發展制必要數學方法, 以對於譜的反問題和節點反問題取個理論解並對這些辦法發展出數值算法。 我們主要的重點是放在微分方程和邊界條件關於普參數的非線性倚賴性情況。 此 外, 我們都將研究二階微分方程和更高階複雜的非線性微分方程。 我們想要了解譜的反 問題和節點反問題關聯。主要的研究步驟為: - 界定反問題,如何由節點和譜去解反問題; - 研究節點和譜的的解析特性, 漸近行為和結構; 研究固有函數的振盪性質; 。 - 研究唯一性理論; - 提供非線性微分方程反問題的構造性解。 - 建立反問題的可解性的充要條件 - 解的穩定性研究 - 發展數值方法和執行數值驗證。 The proposed project is related to the spectral theory of differential operators. The goal of the project is the investigation of nonlinear inverse problems of recovering coefficients of differential operators from given spectral characteristics and/or nodal points of root functions. We plan to work out necessary mathematical methods, to obtain solutions for a wide class of inverse spectral and inverse nodal problems and to develop algorithms for their solutions. We will pay the main attention to pencils of differential operators, i.e. to the case of nonlinear dependence of differential equations and boundary conditions on the spectral parameter. Moreover, we will study both second-order differential equations and more complicated higher-order differential equations. We plan to investigate connections between inverse nodal and inverse spectral problems. The main stages of the study are: - to classify the inverse problems, to introduce the nodal and spectral characteristics needed for formulations and solutions of the inverse problems; - to investigate analytic, asymptotic and structural properties of the nodal and spectral characteristics; to study oscillation properties of the root functions; - to obtain uniqueness theorems, to indicate nodal and spectral characteristics which give us information on necessary measurements for the solution of the inverse problems; - to provide constructive procedures for the solutions of inverse nodal and inverse spectral problems for differential equations with nonlinear dependence on the spectral parameter; - to establish necessary and sufficient conditions for the solvability of this class of nonlinear inverse problems, and to describe the corresponding classes of spectral and nodal characteristics; - to study the stability of the solutions of the inverse problems; - to develop numerical methods and to conduct numerical experiments.
    顯示於類別:[數學學系暨研究所] 研究報告

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋