English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 54566/89241 (61%)
造訪人次 : 10578698      線上人數 : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46355

    題名: Fuzzy system design by a ga-based method for data classification
    作者: 翁慶昌;Wong, Ching-chang;Lin, Bo-chen;Chen, Chia-chong
    貢獻者: 淡江大學電機工程學系
    日期: 2002-04
    上傳時間: 2010-03-26 22:06:34 (UTC+8)
    出版者: Taylor & Francis
    摘要: In this paper, a method based on the Genetic Algorithm (GA) and SVD-QR method is proposed to construct an appropriate fuzzy system for data classification. In this method, an individual of the population in the GA is used to determine a fuzzy partition such that some rough fuzzy sets of each input variable are obtained. In order to extract significant fuzzy rules from the rule base of the defined fuzzy system, the SVD-QR method is applied to remove unnecessary fuzzy rules such that the constructed fuzzy system has a low number of fuzzy rules. A fitness function in the GA is considered to guide the search procedure to select an appropriate fuzzy system such that the number of correctly classified patterns are maximized and the number of fuzzy rules is minimized. Finally, a classification problem is considered to illustrate the effectiveness of the proposed method.
    關聯: Cybernetics and Systems 33(3), pp.253-270
    DOI: 10.1080/019697202753551639
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋