淡江大學機構典藏:Item 987654321/46252
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56829/90534 (63%)
造訪人次 : 12271539      線上人數 : 73
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46252


    題名: Neural-network-based fuzzy model and its application to transient stability prediction in power systems
    作者: 蘇木春;Su, Mu-chun;Liu, Chih-wen;Tsay, Shuenn-shing
    貢獻者: 淡江大學電機工程學系
    日期: 1999-02
    上傳時間: 2010-03-26 21:42:19 (UTC+8)
    出版者: Piscataway: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: We present a general approach to deriving a new type of neural network-based fuzzy model for a complex system from numerical and/or linguistic information. To efficiently identify the structure and the parameters of the new fuzzy model, we first partition the output space instead of the input space. As a result, the input space itself induces corresponding partitions within each of which inputs would have similar outputs. Then we use a set of hyperrectangles to fit the partitions of the input space. Consequently, the premise of an implication in the new type of fuzzy rule is represented by a hyperrectangle and the consequence is represented by a fuzzy singleton. A novel two-layer fuzzy hyperrectangular composite neural network (FHRCNN) can be shown to be computationally equivalent to such a special fuzzy model. The process of presenting input data to each hidden node in a FHRCNN is equivalent to firing a fuzzy rule. An efficient learning algorithm was developed to adjust the weights of an FHRCNN. Finally, we apply FHRCNNs to provide real-time transient stability prediction for use with high-speed control in power systems. From simulation tests on the IEEE 39-bus system, it reveals that the proposed novel FHRCNN can yield a much better performance than that of conventional multilayer perceptrons (MLP's) in terms of computational burden and classification rate
    關聯: IEEE transactions on systems, man and cybernetics, Part : C 29(1), pp.149-157
    DOI: 10.1109/5326.740677
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    1094-6977_29(1)p149-157.pdf249KbAdobe PDF632檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋