English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56826/90592 (63%)
造访人次 : 12139630      在线人数 : 124
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46252


    题名: Neural-network-based fuzzy model and its application to transient stability prediction in power systems
    作者: 蘇木春;Su, Mu-chun;Liu, Chih-wen;Tsay, Shuenn-shing
    贡献者: 淡江大學電機工程學系
    日期: 1999-02
    上传时间: 2010-03-26 21:42:19 (UTC+8)
    出版者: Piscataway: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: We present a general approach to deriving a new type of neural network-based fuzzy model for a complex system from numerical and/or linguistic information. To efficiently identify the structure and the parameters of the new fuzzy model, we first partition the output space instead of the input space. As a result, the input space itself induces corresponding partitions within each of which inputs would have similar outputs. Then we use a set of hyperrectangles to fit the partitions of the input space. Consequently, the premise of an implication in the new type of fuzzy rule is represented by a hyperrectangle and the consequence is represented by a fuzzy singleton. A novel two-layer fuzzy hyperrectangular composite neural network (FHRCNN) can be shown to be computationally equivalent to such a special fuzzy model. The process of presenting input data to each hidden node in a FHRCNN is equivalent to firing a fuzzy rule. An efficient learning algorithm was developed to adjust the weights of an FHRCNN. Finally, we apply FHRCNNs to provide real-time transient stability prediction for use with high-speed control in power systems. From simulation tests on the IEEE 39-bus system, it reveals that the proposed novel FHRCNN can yield a much better performance than that of conventional multilayer perceptrons (MLP's) in terms of computational burden and classification rate
    關聯: IEEE transactions on systems, man and cybernetics, Part : C 29(1), pp.149-157
    DOI: 10.1109/5326.740677
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1094-6977_29(1)p149-157.pdf249KbAdobe PDF628检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈