English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55178/89446 (62%)
造訪人次 : 10661663      線上人數 : 36
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46250

    題名: A GA-based method for constructing fuzzy systems directly from numerical data
    作者: 翁慶昌;Wong, Ching-chang;Chen, Chia-chong
    貢獻者: 淡江大學電機工程學系
    日期: 2000-12
    上傳時間: 2010-03-26 21:37:29 (UTC+8)
    出版者: Piscataway: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: A method based on the concepts of genetic algorithm (GA) and recursive least-squares method is proposed to construct a fuzzy system directly from some gathered input-output data of the discussed problem. The proposed method can find an appropriate fuzzy system with a low number of rules to approach an identified system under the condition that the constructed fuzzy system must satisfy a predetermined acceptable performance. In this method, each individual in the population is constructed to determine the number of fuzzy rules and the premise part of the fuzzy system, and the recursive least-squares method is used to determine the consequent part of the constructed fuzzy system described by this individual. Finally, three identification problems of nonlinear systems are utilized to illustrate the effectiveness of the proposed method.
    關聯: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 30(6), pp.904-911
    DOI: 10.1109/3477.891153
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    1083-4419_30(6)p904-911.pdf225KbAdobe PDF1050檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋