English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58237/91808 (63%)
造訪人次 : 13784177      線上人數 : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46222

    題名: Planning system for indoor wireless network
    作者: Wu, Rong-hou;李揚漢;Lee, Yang-han;Chen, Shih-an
    貢獻者: 淡江大學電機工程學系
    日期: 2001-02
    上傳時間: 2010-03-26 21:20:32 (UTC+8)
    出版者: New York: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: A novel wireless LAN prediction tool using the genetic algorithm and neural network has been proposed. We establish a site survey tool system to predict the received signal strength index (RSSI) in an indoor environment. The system includes six items. (1) The fading function: it corrects the functional characteristics of the RSSI for different types of wireless LAN cards in free space. (2) The setting of the attributes of obstacles in the indoor environment: the idea of a “single attribute of local area” is proposed. If there are the same obstacles in one area, we set the area as one attribute. (3) The genetic algorithm: where we use reproduction, crossover and mutation to obtain the propagation loss through the different obstacles (Li). (4) The neural network: we use neural network concept to correct the prediction error arising from the multipath effect in the indoor environment. (5) The auxiliary judgment for the sampling points: the method is helpful to users in establishing the best sampling points. (6) The calibration of prediction results: we use calibration to correct the prediction error arisen from Li
    關聯: IEEE transactions on consumer electronics 47(1), pp.73-79
    DOI: 10.1109/30.920422
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0098-3063_47(1)p73-79.pdf559KbAdobe PDF642檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋