English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55242/89549 (62%)
造访人次 : 10732923      在线人数 : 33
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46204


    题名: Using NU-SSGA to reduce the searching time in inverse problem of a buried metallic object
    作者: Chien, Wei;丘建青;Chiu, Chien-ching
    贡献者: 淡江大學電機工程學系
    关键词: Cubic-spline;half-space;improved efficient steady-state genetic algorithm;NU-SSGA;inverse problem
    日期: 2005-10
    上传时间: 2010-03-26 21:14:29 (UTC+8)
    出版者: Piscataway: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: We describe an inverse scattering problem with the aim of reducing the computation time for recovering the details of a perfectly conducting cylindrical object buried in a half-space. First, we use Fourier-series or cubic-spline methods to describe the shape and reformulate the inverse problem into an optimization one. Then we solved it by the improved steady-state genetic algorithm (SSGA) and simple genetic algorithm (SGA) respectively and compare the cost time in finding out the global extreme solution of the objective function. It is found the searching ability of SSGA is much powerful than that of the SGA. Even when the initial guess is far away from the exact one, the cost time for converging to a global extreme solution using by SSGA is much less than that by SGA. Numerical results are given to show that the inverse problem by using SSGA is much better than SGA in time costing.
    關聯: IEEE Transactions on Antennas and Propagation 53(10), pp.3128-3134
    DOI: 10.1109/TAP.2005.856362
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0018-926X_53(10)p3128-3134.pdf493KbAdobe PDF647检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈