English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56738/90513 (63%)
造訪人次 : 12091011      線上人數 : 45
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/46130

    題名: Alternative KPSO-Clustering Algorithm
    作者: 余繁;Ye, Fun;Chen, Ching-yi
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Clustering;Particle Swarm Optimization;K-means
    日期: 2005-06
    上傳時間: 2010-03-26 21:01:28 (UTC+8)
    出版者: 淡江大學
    摘要: This paper presents an evolutionary particle swarm optimization (PSO) learning-based method to optimally cluster N data points into K clusters. The hybrid PSO and K-means algorithm with a novel alternative metric, called Alternative KPSO-clustering (AKPSO), is developed to automatically detect the cluster centers of geometrical structure data sets. The alternative metric is known has more robust ability than the common-used Euclidean norm. In AKPSO algorithm, the special alternative metric is considered to improve the traditional K-means clustering algorithm to deal with various structure data sets. For testing the performance of the proposed method, this paper will show the experience results by using several artificial and real data sets. Simulation results compared with some well-known clustering methods demonstrate the robustness and efficiency of the novel AKPSO method.
    關聯: 淡江理工學刊=Tamkang journal of science and engineering 8(2), pp.165-174
    DOI: 10.6180/jase.2005.8.2.09
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    1560-6686_8-2-9.pdf3469KbAdobe PDF339檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋