淡江大學機構典藏:Item 987654321/45997
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10080505      在线人数 : 19253
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/45997


    题名: Gas flow in micro-channels using a boundary-layer approach
    作者: Chen, Ching-Shung
    贡献者: 淡江大學航空太空工程學系
    关键词: Boundary conditions;Boundary layers;Compressible flow;Diffusion in gases;Energy transfer;Helium;Microelectromechanical devices;Navier Stokes equations;Nitrogen;Microchannel flow;Slip flow;Channel flow
    日期: 2000-12
    上传时间: 2013-03-20 16:19:11 (UTC+8)
    出版者: Geneva: Inderscience Publishers
    摘要: The present work numerically studies gaseous flow in micro-channels. The working fluids are nitrogen and helium. The proposed model assumes the fluid is a continuum but employs a slip boundary condition on the channel wall. Although slip flow in micro-channels can be investigated by solving numerically the compressible Navier-Stokes equations, as was done previously by several investigators, the hyperbolic-parabolic character of the equations makes it very inefficient. The results of present work show that they can be predicted accurately by solving the compressible boundary-layer equations. The parabolic character of the boundary-layer equations renders the present method a very efficient and accurate tool in studying slip flows. The results also demonstrate that diffusion is the dominant mechanism in momentum and energy transfers in micro-channel flows. The slip boundary condition is the result of rarefaction, which is due to the incomplete momentum and energy exchanges between gas molecules and the walls. The results show that the slip condition has decisive effects on the velocity and mass flow rate of the flow and has to be taken into account.
    關聯: International Journal of Computer Applications in Technology 13(6), pp.316-323
    DOI: 10.1504/IJCAT.2000.000253
    显示于类别:[航空太空工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML317检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈