English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56859/90577 (63%)
造访人次 : 12301728      在线人数 : 76
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/45995

    题名: Microstructural and Mechanical Effects of Latex, Methylcellulose, and Silica Fume on Carbon Fiber Reinforced Cement
    作者: Chen, Pu-woei;Fu, Xuli;Chung, D. D. L.
    贡献者: 淡江大學航空太空工程學系
    关键词: carbon;cements;concrete;flexural strength;latex (plastic);silica fume;voids
    日期: 1997-03
    上传时间: 2013-03-20 16:19:19 (UTC+8)
    出版者: Farmington Hills: American Concrete Institute
    摘要: The effect of methylcellulose, silica fume, and latex on the degree of dispersion of short carbon fibers in cement paste (with water-reducing agent in an amount varying from 0 to 3 percent by weight of cement) was assessed. This degree, as indicated by the ratio of the measured volume of electrical conductivity to the calculated value, and the effectiveness of the fibers in enhancing the tensile/flexural properties attained by using methylcellulose and silica fume were higher than those attained by using methylcellulose alone or latex. Methylcellulose was superior to latex in giving a high degree of fiber dispersion at fiber volume fractions 1 percent, as measured by this technique, but latex resulted in superior tensile-flexural properties and lower content and size of air voids than methylcellulose. With the fiber content fixed at 0.53 vol. percent, the degree of fiber dispersion, as measured by this technique, decreased with increasing latex-cement ratio from 0.05 to 0.30, while the void content attained a minimum at an intermediate latex-cement ratio of 0.15. As a result of the former, the flexural toughness decreased monotonically with increasing latex-cement ratio. As a result of the latter, the flexural strength attained a maximum at an intermediate latex-cement ratio of 0.15. In contrast, both flexural toughness and strength increased monotonically with increasing latex-cement ratio when fibers were absent.
    關聯: ACI Materials Journal 94(2), pp.147-155
    显示于类别:[航空太空工程學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈