English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 61875/94645 (65%)
造訪人次 : 1636578      線上人數 : 11
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/45991


    題名: Nonlinear asymptotic theory of hypersonic flow past a circular cone
    作者: Chou, Y. T.;Lin, S. C.;Feng, Chao-Kang
    貢獻者: 淡江大學航空太空工程學系
    關鍵詞: Approximation theory;Asymptotic stability;Equations of motion;Iterative methods;Nonlinear equations;Shock waves;Supersonic flow;Thermodynamic properties;Taylor-Maccoll equation;Hypersonic flow
    日期: 1998-03
    上傳時間: 2013-03-20 16:21:50 (UTC+8)
    出版者: Heidelberg: Springer
    摘要: The hypersonic small-disturbance theory is reexamined in this study. A systematic and rigorous approach is proposed to obtain the nonlinear asymptotic equation from the Taylor-Maccoll equation for hypersonic flow past a circular cone. Using this approach, consideration is made of a general asymptotic expansion of the unified supersonic-hypersonic similarity parameter together with the stretched coordinate. Moreover, the successive approximate solutions of the nonlinear hypersonic smalldisturbance equation are solved by iteration. Both of these approximations provide a closed-form solution, which is suitable for the analysis of various related flow problems. Besides the velocity components, the shock location and other thermodynamic properties are presented. Comparisons are also made of the zeroth-order with first-order approximations for shock location and pressure coefficient on the cone surface, respectively. The latter (including the nonlinear effects) demonstrates better correlation with exact solution than the zeroth-order approximation. This approach offers further insight into the fundamental features of hypersonic small-disturbance theory.
    關聯: Acta Mechanica 130(1-2), pp.1-15
    DOI: 10.1007/BF01187039
    顯示於類別:[航空太空工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML349檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋