淡江大學機構典藏:Item 987654321/45832
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9904563      在线人数 : 19370
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/45832


    题名: Direct kinematic singularities of 3-3 Stewart–Gough platforms
    作者: 劉昭華;Liu, Chao-hwa;Chiu, J.
    贡献者: 淡江大學機械與機電工程學系
    日期: 2005-01
    上传时间: 2010-03-26 20:05:55 (UTC+8)
    出版者: Professional Engineering Publishing (Institution of Mechanical Engineers)
    摘要: In this article, a method to locate direct kinematic singularities of a 3-3 Stewart-Gough parallel manipulator (called a Stewart manipulator henceforth) is proposed. The Stewart manipulator is first replaced by an analogous manipulator, the 3PRPS parallel manipulator, and as the first three active joints of this manipulator remain fixed, this manipulator reduces to an asymmetric 3RPS parallel manipulator. With all moving platform's degrees of freedom, except its height, properly specified, there exists at least one height that gives rise to direct kinematic singularity of the asymmetric 3RPS manipulator and this height is a root of a cubic polynomial equation. The procedure to locate direct kinematic singularities thus reduces to solving cubic polynomial equations. Numerical results show that every singular configuration of the asymmetric 3RPS manipulator thus-determined is also a singular configuration of the 3-3 Stewart-Gough platform.
    關聯: Proceedings of the Institution of Mechanical Engineers, Part K, Journal of Multi-body Dynamics 219(4), pp.311-324
    DOI: 10.1243/146441905X68822
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML78检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈