English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60861/93527 (65%)
造访人次 : 1506243      在线人数 : 21
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/45281

    题名: An Efficient GA-Based Clustering Technique
    作者: 林慧珍;Lin, Hwei-jen;Yang, Fu-wen;Kao, Yang-ta
    贡献者: 淡江大學資訊工程學系
    关键词: Unsupervised Clustering;Genetic Algorithms;Reproduction;Crossover;Mutation;Fitness;Cluster Validity
    日期: 2005-06-01
    上传时间: 2010-03-26 18:55:24 (UTC+8)
    出版者: 淡江大學
    摘要: In this paper, we propose a GA-based unsupervised clustering technique that selects cluster centers directly from the data set, allowing it to speed up the fitness evaluation by constructing a look-up table in advance, saving the distances between all pairs of data points, and by using binary representation rather than string representation to encode a variable number of cluster centers. More effective versions of operators for reproduction, crossover, and mutation are introduced. Finally, the Davies-Bouldin index is employed to measure the validity of clusters. The development of our algorithm has demonstrated an ability to properly cluster a variety of data sets. The experimental results show that the proposed algorithm provides a more stable clustering performance in terms of number of clusters and clustering results. This results in considerable less computational time required, when compared to other GA-based clustering algorithms.
    關聯: 淡江理工學刊=Tamkang journal of science and engineering 8(2), pp.113-122
    DOI: 10.6180/jase.2005.8.2.04
    显示于类别:[資訊工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    1560-6686_8-2-4.pdf1192KbAdobe PDF434检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈