English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55990/90025 (62%)
造訪人次 : 11536837      線上人數 : 104
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/45264

    題名: An Improved Unsupervised Clustering Algorithm based on Population Markov Chain
    作者: Yang, Fu-Wen;Lin, Hwei-Jen;Yen, Shwu-Huey
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Unsupervised clustering;genetic algorithms;population Markov chain;cluster validity;Davies-Bouldin index
    日期: 2007
    上傳時間: 2010-03-26 18:53:51 (UTC+8)
    出版者: Calgary: ACTA Press
    摘要: GA-based clustering approaches have the advantage of automatically determining the optimal number of clusters. In a previous work, we proposed an efficient GA-based clustering algorithm, the PMCC method, and compared it with a representative GA-based clustering algorithm, the GCUK method, to prove its efficiency and effectiveness. In this paper we modify this PMCC method to obtain an improved version: the WPMCC method. This modification prevents premature convergence problem caused in the PMCC method while maintaining the advantage of the PMCC method. The experimental results show that the proposed algorithm not only solves the problem of premature convergence, thereby providing a more stable clustering performance in terms of number of clusters and clustering results, but it also improves the efficiency in terms of time. [PUBLICATION ABSTRACT]
    關聯: International Journal of Computers and Applications 29(3), pp.253-258
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋