English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 53694/88316 (61%)
造访人次 : 10276376      在线人数 : 14
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/45264

    题名: An Improved Unsupervised Clustering Algorithm based on Population Markov Chain
    作者: Yang, Fu-Wen;Lin, Hwei-Jen;Yen, Shwu-Huey
    贡献者: 淡江大學資訊工程學系
    关键词: Unsupervised clustering;genetic algorithms;population Markov chain;cluster validity;Davies-Bouldin index
    日期: 2007
    上传时间: 2010-03-26 18:53:51 (UTC+8)
    出版者: Calgary: ACTA Press
    摘要: GA-based clustering approaches have the advantage of automatically determining the optimal number of clusters. In a previous work, we proposed an efficient GA-based clustering algorithm, the PMCC method, and compared it with a representative GA-based clustering algorithm, the GCUK method, to prove its efficiency and effectiveness. In this paper we modify this PMCC method to obtain an improved version: the WPMCC method. This modification prevents premature convergence problem caused in the PMCC method while maintaining the advantage of the PMCC method. The experimental results show that the proposed algorithm not only solves the problem of premature convergence, thereby providing a more stable clustering performance in terms of number of clusters and clustering results, but it also improves the efficiency in terms of time. [PUBLICATION ABSTRACT]
    關聯: International Journal of Computers and Applications 29(3), pp.253-258
    显示于类别:[資訊工程學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈