English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56552/90363 (63%)
造訪人次 : 11832989      線上人數 : 143
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/44551

    題名: Enforced self-organizing map neural networks for river flood forecasting
    作者: Chang, Fi-john;張麗秋;Chang, Li-chiu;Wang, Yan-shiang
    貢獻者: 淡江大學水資源及環境工程學系
    日期: 2007-03-01
    上傳時間: 2010-03-26 16:17:20 (UTC+8)
    出版者: Wiley-Blackwell
    摘要: Self-organizing maps (SOMs) have been successfully accepted widely in science and engineering problems; not only are their results unbiased, but they can also be visualized. In this study, we propose an enforced SOM (ESOM) coupled with a linear regression output layer for flood forecasting. The ESOM re-executes a few extra training patterns, e.g. the peak flow, as recycling input data increases the mapping space of peak flow in the topological structure of SOM, and the weighted sum of the extended output layer of the network improves the accuracy of forecasting peak flow. We have investigated an ESOM neural network by using the flood data of the Da-Chia River, Taiwan, and evaluated its performance based on the results obtained from a commonly used back-propagation neural network. The results demonstrate that the ESOM neural network has great efficiency for clustering, especially for the peak flow, and super capability of modelling the flood forecast. The topology maps created from the ESOM are interesting and informative. Copyright © 2007 John Wiley & Sons, Ltd.
    關聯: Hydrological processes 21(6), 741-749
    DOI: 10.1002/hyp.6262
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Chang_et_al-2007-Hydrological_Processes.pdf335KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋