English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57970/91504 (63%)
造访人次 : 13687668      在线人数 : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/44542

    题名: Counterpropagation Fuzzy-Neural Network for City Flood Control System
    作者: Chang, Fi-John;Chang, Kai-yao;張麗秋;Chang, Li-chiu
    贡献者: 淡江大學水資源與環境工程學系
    关键词: Fuzzy-neural network;Rule-base control;Artificial intelligence;Flood;Pumping station operation
    日期: 2008-08
    上传时间: 2010-08-10 11:24:55 (UTC+8)
    出版者: Amsterdam: Elsevier BV
    摘要: The counterpropagation fuzzy-neural network (CFNN) can effectively solve highly non-linear control problems and robustly tune the complicated conversion of human intelligence to logical operating system. We propose the CFNN for extracting flood control knowledge in the form of fuzzy if–then rules to simulate a human-like operating strategy in a city flood control system through storm events. The Yu-Cheng pumping station, Taipei City, is used as a case study, where storm and operating records are used to train and verify the model’s performance. Historical records contain information of rainfall amounts, inner water levels, and pump and gate operating records in torrential rain events. Input information can be classified according to its similarity and mapped into the hidden layer to form precedent if–then rules, while the output layer gradually adjusts the linked weights to obtain the optimal operating result. A model with increasing historical data can automatically increase rules and thus enhance its predicting ability. The results indicate the network has a simple basic structure with efficient learning ability to construct a human-like operating strategy and has the potential ability to automatically operating the flood control system.
    關聯: Journal of Hydrology 358(1-2), pp.24-34
    DOI: 10.1016/j.jhydrol.2008.05.013
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    0022-1694_358(1-2)p24-34.pdf1853KbAdobe PDF277检视/开启
    1-s2.0-S0022169408002400-main.pdf1853KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈