English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56552/90363 (63%)
造訪人次 : 11832954      線上人數 : 125
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/44542

    題名: Counterpropagation Fuzzy-Neural Network for City Flood Control System
    作者: Chang, Fi-John;Chang, Kai-yao;張麗秋;Chang, Li-chiu
    貢獻者: 淡江大學水資源與環境工程學系
    關鍵詞: Fuzzy-neural network;Rule-base control;Artificial intelligence;Flood;Pumping station operation
    日期: 2008-08
    上傳時間: 2010-08-10 11:24:55 (UTC+8)
    出版者: Amsterdam: Elsevier BV
    摘要: The counterpropagation fuzzy-neural network (CFNN) can effectively solve highly non-linear control problems and robustly tune the complicated conversion of human intelligence to logical operating system. We propose the CFNN for extracting flood control knowledge in the form of fuzzy if–then rules to simulate a human-like operating strategy in a city flood control system through storm events. The Yu-Cheng pumping station, Taipei City, is used as a case study, where storm and operating records are used to train and verify the model’s performance. Historical records contain information of rainfall amounts, inner water levels, and pump and gate operating records in torrential rain events. Input information can be classified according to its similarity and mapped into the hidden layer to form precedent if–then rules, while the output layer gradually adjusts the linked weights to obtain the optimal operating result. A model with increasing historical data can automatically increase rules and thus enhance its predicting ability. The results indicate the network has a simple basic structure with efficient learning ability to construct a human-like operating strategy and has the potential ability to automatically operating the flood control system.
    關聯: Journal of Hydrology 358(1-2), pp.24-34
    DOI: 10.1016/j.jhydrol.2008.05.013
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0022-1694_358(1-2)p24-34.pdf1853KbAdobe PDF268檢視/開啟
    1-s2.0-S0022169408002400-main.pdf1853KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋