淡江大學機構典藏:Item 987654321/44515
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9693030      Online Users : 10084
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/44515


    Title: 使用局部特徵的相似人臉影像檢索
    Other Titles: Similar Face Image Retrieval by Local Feature
    Authors: 鄭春爐;Cheng, Chun-lu
    Contributors: 淡江大學資訊工程學系碩士在職專班
    許輝煌;Hsu, Hui-huang
    Keywords: 主成分分析l;邊緣偵測;人臉偵測;PCA;Canny;Face Detection
    Date: 2009
    Issue Date: 2010-03-16 10:35:57 (UTC+8)
    Abstract: 影像處理研究領域裡,人臉辨識這個議題受到廣泛的重視。在本論文中,建構一套使用局部特徵的相似人臉影像檢索系統,本系統可透過網際網路上傳人像圖片進行檢索搜尋,系統架構主要可分人臉偵測、特徵擷取及人臉影像檢索三大部分,人臉偵測使用Viola與Jones[1]提出了積分影像(Integral Image)概念和一個基於Adaboost 方法訓練人臉偵測分類器的方法。特徵擷取部分則將人臉各特徵區域預先劃分比例,再透過Haar-like特徵的基礎上,經由Boosting演算法學習訓練(左眼、右眼、鼻子及嘴巴)參數,再與特徵區域進行Adaboost的特徵偵測,得到的特徵利用主成分分析(PCA)方法抽取特徵參數。最後人臉影像檢索則為選擇檢索特徵部位及權重值設定所組成,透過複合式的特徵部位檢索資料庫得到相似人臉影像。
    In the field of image processing research, the topic of face recognition has been catch the extensive attention. In this paper, we use local features to build a Similar Face Image Retrieval System. This system can search portraits by uploading it to the Internet. The system architecture can be mainly divided into three parts, including face detection, feature capture and facial characteristic searching. The face detection part takes advantages of the Integral Image concept from Viola [1] and a human face detecting training method of Adaboost. The feature capture part pre-scales each facial feature, and adds parameters through Boosting algorithm (left eye, right eye, nose and mouth) on the base of Haar-like characteristics. Then we combine the first and second part to detect the feature capture regions by Adaboost. The detected features were analyzed by principal component analysis (PCA) method to extraction of characteristic parameters. Finally, the Face Image Retrieval System is consisting of alternate feature regions and the value set weight. By using this system, we could search similar face images through a feature database.
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown294View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback