English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3987540      Online Users : 628
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/44308

    Title: Exact Uniqueness and Multiplicity Criteria for, and Steady State and Dynamic Behaviors of an Isothermal CSTR with General Autocatalytic Reactions. No Product R in Feed
    Other Titles: 進行通用型自催化反應之恒溫連續攪拌槽反應器之穩態唯一性與多重性之確切判定準則以及其穩態與動態之行為﹣﹣進料中不含產物R
    Authors: Chi, Jung-chang
    Contributors: 淡江大學化學工程與材料工程學系
    Keywords: 反應;反應器;自催化;恆溫;通用型;連續;攪拌槽
    Date: 1985-04
    Issue Date: 2013-03-12 11:21:33 (UTC+8)
    Publisher: 新竹市:中國化學工程學會
    Abstract: An isothermal continuous flow stirred tank reactor within which an autocatalytic reaction of the general type A→aR+P, -rA = k,C~C.R/ (1+k, CA)P, is taking place without feeding R is examined. Exact criteria for uniqueness and multiplicity of steady states as well as stable steady states are established. Steady state behavior with changing Damkohler number and dynamic reactor behavior on the phase plane are discussed. The maximal number of steady state solutions is found to be four for m< 1 and three for m>=l. The system can have at most two stable steady states. It is proven that all stable steady states are nodes, all unstable steady states are saddle points, and no limit cycles exist. Graphs showing regions of uniqueness and multiplicity of stable steady states in parameters space are given.
    本文所探討的系統為恆溫連續攪拌槽反應器,在其中所進行的反應為通用型是之自催化反應 A→αR+P,-rA=K1CmaCmr/(1+K2CA)P,且反應器之進料不含R。我們建立了此系統穩態及穩定穩態之唯一性與多重性之確切判定準則。文中並討論隨Damköhler 數變之穩態行為以及在項平面上之反應器動態行為。若m<1,此系統最多可有四個穩態解;若m>=1,則最多只有三個。至於穩定之穩態則最多只有兩個。經證明,所有穩定之穩態皆為節點,所有不穩定之穩態皆為鞍點,兒系統不會有極限環圈存在。在參數空間之穩定穩態唯一性以及多重性之範圍並以圖表示之。
    Relation: Journal of the Chinese Institute of Chemical Engineers=中國化學工程學會會誌 16(2), pp.133-144
    Appears in Collections:[化學工程與材料工程學系暨研究所] 期刊論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback