English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91876 (63%)
造訪人次 : 14067613      線上人數 : 68
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/44241

    題名: Compression of deformable gel particles
    作者: Lu, Wei-ming;Tung, Kuo-lun;Hung, Shu-mei;Shiau, Jia-shyan;黃國楨;Hwang, Kuo-jen
    貢獻者: 淡江大學化學工程與材料工程學系
    關鍵詞: Soft particle;Deformable particle;Compression;Deformation;Ca-alginate sphere
    日期: 2001-05-03
    上傳時間: 2010-03-09 10:05:23 (UTC+8)
    出版者: Elsevier
    摘要: In order to study the deformation behavior of deformable particles under hydraulic drag and mechanical load such as in filtration, a number of in situ strengths of single calcium-alginate gel particle and inter-particle contact modes among gel particles were explored. A linear viscoelastic contact model based upon the Hertz theory was proposed to describe the deformation behavior of deformable gel particles. The effect of particle deformation due to frictional drag and mass of particles on the reduction of porosity was studied to examine how this variation led to the increase in contact area between particles. Both theoretical and experimental results show that the modified Hertz theory combined with the linear viscoelastic model can be used to predict the mechanical behaviors of gel particle under mechanical compression well. Experimental results also demonstrate that a given mechanical load would result in a higher degree of deformation of particles than under the same amount of hydraulic drag. Based upon the theoretical derivation and the verification of experimental results, a correlated relationship between specific surface area ratio and bed porosity, ε, with a validated range of 0.05<ε<0.5 is presented.
    關聯: Powder Technology 116(1), pp.1-12
    DOI: 10.1016/S0032-5910(00)00357-0
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋