淡江大學機構典藏:Item 987654321/44210
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62797/95867 (66%)
造访人次 : 3733992      在线人数 : 415
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/44210


    题名: Preparation of Clay/PMMA Nanocomposites with Intercalated or Exfoliated Structure for Bone Cement Synthesis
    作者: Lin, Dar-jong
    贡献者: 淡江大學化學工程與材料工程學系
    关键词: bone cement;cell culture;clay;intercalation;nanocomposites
    日期: 2006-06-07
    上传时间: 2010-03-09 10:03:00 (UTC+8)
    出版者: Weinheim: Wiley - V C H Verlag GmbH & Co. KGaA
    摘要: Clay/PMMA nanocomposites were prepared by melt blending of an organically modified MMT with PMMA under various process conditions. The MMT clay was initially cation exchanged with octadecylammonium to enhance its hydrophobicity and to expand the interlamellar space of the silicate plates. PMMA was then inserted into the inter-lamellar space of the modified clay by melt blending at an elevated temperature. The effects of blending temperature, blending time, and clay/PMMA compositions on the level of expansion and homogenization were investigated. Composites with intercalated and/or exfoliated clay structure were obtained depending upon the process conditions, as confirmed by XRD diffractometry. The thermal decomposition temperature (Td) and glass transition temperature (Tg) of the composites were determined, respectively, by TGA and DSC analyses. Marked improvements, up to 35 °C, of the thermal stability (Td) with respect to pure PMMA were achieved for many of the composite samples. The Tg of the composites, however, does not increase accordingly. Furthermore, a novel type of bone cement was synthesized by applying the clay/PMMA nanocomposites as a substitute for PMMA in a typical formulation. These bone cements demonstrated much higher impact strength and better cell compatibility than the surgical Simplex P cement. Therefore, the bone cements with clay/PMMA nanocomposites meet the requirement for the architectural design of orthopedic surgery.
    關聯: Macromolecular Materials and Engineering 291(6), p.661-669
    DOI: 10.1002/mame.200500389
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML272检视/开启
    mame.200500389.pdf207KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈