English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91876 (63%)
造訪人次 : 14082888      線上人數 : 69
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/44165

    題名: Local properties of cake in cross-flow microfiltration of submicron particles
    作者: 黃國楨;Hwang, Kuo-jen;Liu, Hseng-chang;Lu, Wei-ming
    貢獻者: 淡江大學化學工程與材料工程學系
    關鍵詞: Submicron particle;Cross-flow microfiltration;Cake property;Solid-liquid separation
    日期: 1998-01
    上傳時間: 2010-03-09 09:59:58 (UTC+8)
    出版者: Elsevier
    摘要: The local properties of filter cakes, such as porosity and specific filtration resistance, in cross-flow microfiltration of submicron particles are studied based on an analysis of force. The packing of particles in a filter cake can be divided into two modes. When the solid compressive pressure is smaller than the critical value, there exists an equilibrium distance between neighbouring particles due to the electrostatic repulsive force, and the local cake porosity can be estimated by using the cell model proposed in this study. When the solid compressive pressure is greater than the critical value, the compressive force can overcome the repulsive barrier, the particles then come into contact with neighbours, and the power-type empirical relationship between cake porosity and solid compressive pressure can be employed to estimate the local cake porosity. It can be found that the half of the cake near the filter membrane has a compact structure, and a high filtration resistance within the operating conditions of this study. On the other hand, the portion of cake near the cake surface has a high porosity due to the separation of particles. By using this model, the effect of electrolyte concentration on cake properties can be analyzed, and the estimated values of average porosity and average specific filtration resistance under various electrolyte concentrations, cross-flow velocities, and filtration pressures agree fairly well with the experimental data.
    關聯: Journal of membrane science 138(2), pp.181-192
    DOI: 10.1016/S0376-7388(97)00230-5
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋