English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55184/89457 (62%)
造访人次 : 10678602      在线人数 : 92
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41450


    题名: Some optimal strategies for bandit problems with beta prior distributions
    作者: 林千代;Lin, Chien-tai;Shiau, C. J.
    贡献者: 淡江大學數學學系
    关键词: Bandit problems;sequential experimentation;dynamic allocation of Bernoulli processes;staying-with-a-winner;switching-on-a-loser;k-failure strategy;m-run strategy;non-recalling m-run strategy;N-learning strategy
    日期: 2000-06-01
    上传时间: 2010-01-28 07:35:53 (UTC+8)
    出版者: Kluwer Academic Publishers
    摘要: A bandit problem with infinitely many Bernoulli arms is considered. The parameters of Bernoulli arms are independent and identically distributed random variables from a common distribution with beta(a, b). We investigate the k-failure strategy which is a modification of Robbins's stay-with-a-winner/switch-on-a-loser strategy and three other strategies proposed recently by Berry et al. (1997, Ann. Statist., 25, 2103–2116). We show that the k-failure strategy performs poorly when b is greater than 1, and the best strategy among the k-failure strategies is the 1-failure strategy when b is less than or equal to 1. Utilizing the formulas derived by Berry et al. (1997), we obtain the asymptotic expected failure rates of these three strategies for beta prior distributions. Numerical estimations and simulations for a variety of beta prior distributions are presented to illustrate the performances of these strategies.

    Bandit problemssequential experimentationdynamic allocation of Bernoulli processesstaying-with-a-winnerswitching-on-a-loserk-failure strategym-run strategynon-recalling m-run strategyN-learning strategy
    關聯: Annals of the Institute of Statistical Mathematics 52(2), pp.397-405
    DOI: 10.1023/A:1004130209258
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML50检视/开启
    index.html0KbHTML47检视/开启
    Some optimal strategies for bandit problems with beta prior distributions.pdf536KbAdobe PDF0检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈