English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55184/89457 (62%)
造访人次 : 10684281      在线人数 : 69
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41423


    题名: A note on strategies for bandit problems with infinitely many arms
    作者: 陳功宇;Chen, Kung-yu;林千代;Lin, Chien-tai
    贡献者: 淡江大學數學學系
    关键词: K-failure strategy;M-run strategy;Nn-learning strategy;Non-recalling m-run strategy
    k-failure strategy;m-run strategy;Nn-learning strategy;non-recalling m-run strategy
    日期: 2004-05
    上传时间: 2010-01-28 07:32:01 (UTC+8)
    出版者: Springer
    摘要: A bandit problem consisting of a sequence of n choices (n→∞) from a number of infinitely many Bernoulli arms is considered. The parameters of Bernoulli arms are independent and identically distributed random variables from a common distribution F on the interval [0,1] and F is continuous with F(0)=0 and F(1)=1. The goal is to investigate the asymptotic expected failure rates of k-failure strategies, and obtain a lower bound for the expected failure proportion over all strategies presented in Berry et al. (1997). We show that the asymptotic expected failure rates of k-failure strategies when 0<b≤1 and a lower bound can be evaluated if the limit of the ratio F(1)−F(t) versus (1−t)b exists as t→1− for some b>0.
    關聯: Metrika 59(2), pp.193-203
    DOI: 10.1007/s001840300279
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    A note on strategies for bandit problems with infinitely many arms.pdf253KbAdobe PDF0检视/开启
    index.html0KbHTML49检视/开启
    index.html0KbHTML58检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈