In some recent investigations involving differential operators for generalized Laguerre polynomials, Herman Bavinck (1996) encountered and proved a certain summation formula for the classical Laguerre polynomials. The main object of this sequel to Bavinck's work is to prove a generalization of this summation formula for a class of hypergeometric polynomials. The demonstration, which is presented here in the general case, differs markedly from the earlier proof given for the known special case. The general summation formula is also applied to derive the corresponding result for the classical Jacobi polynomials.
關聯:
Proceedings of the American Mathematical Society 133(11), pp.3295-3302