English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 53641/88287 (61%)
造访人次 : 9914724      在线人数 : 38
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41400

    题名: The Perron generalized eigenspace and the spectral cone of a cone-preserving map
    作者: 譚必信;Tam, Bit-shun
    贡献者: 淡江大學數學學系
    关键词: Cone-preserving map;Nonnegative matrix;Level characteristics;Height characteristic;Semi-distinguished invariant face;Perron generalized eigenspace;Principal component;Spectral cone;Preferred-basis theorem;Majorization relation
    日期: 2004-12-01
    上传时间: 2010-01-28 07:28:53 (UTC+8)
    出版者: Elsevier
    摘要: A unified treatment is offered to reprove known results on the following four highlights of the combinatorial spectral theory of nonnegative matrices, or to extend (or partly extend) the results to the setting of a linear map preserving a polyhedral proper (or proper) cone: the preferred-basis theorem, equivalent conditions for equality of the (graph-theoretic) level characteristic and the (spectral) height characteristic, the majorization relation between the two characteristics, and the relation between the combinatorial properties of a nonnegative matrix and the positivity of the individual entries in its principal components. This is achieved by employing the new concept of spectral cone of a cone-preserving map and combining the cone-theoretic methods developed in our previous papers on the geometric spectral theory of cone-preserving maps with the algebraic–analytic method introduced by Hartwig, Neumann and Rose and further exploited by Neumann and Schneider for nonnegative matrices.
    關聯: Linear Algebra and Its Applications 393(1-3), pp.375-429
    DOI: 10.1016/j.laa.2004.08.020
    显示于类别:[數學學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈