淡江大學機構典藏:Item 987654321/41378
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64188/96967 (66%)
造访人次 : 11338721      在线人数 : 113
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/41378


    题名: On the distinguished eigenvalues of a cone-preserving map
    作者: Tam, Bit-Shun
    贡献者: 淡江大學數學學系
    日期: 1990-04
    上传时间: 2013-06-13 11:25:26 (UTC+8)
    出版者: Philadelphia: Elsevier Inc.
    摘要: We generalize many known results on a nonnegative matrix concerning linear inequalities, Collatz-Wielandt sets, and generalized eigenvectors to the setting of a matrix preserving a (finite-dimensional) proper cone. A simple cone-theoretic proof is given for the nonnegative-basis theorem for the algebraic eigenspace of a nonnegative matrix. The result is also extended to a matrix preserving a polyhedral cone. Given proper cones K1 and K2 in different euclidean spaces, a necessary and sufficient condition is also obtained for the existence of a nonzero matrix X which takes K2 into K1 and satisfies AX = XB, where A, B are given matrices preserving K1 and K2 respectively. This extends and answers a recent open question posed by Hartwig.
    關聯: Linear Algebra and Its Applications 131(C), pp.17-37
    DOI: 10.1016/0024-3795(90)90372-J
    显示于类别:[應用數學與數據科學學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0024-3795_131(C)p17-37.pdf1401KbAdobe PDF259检视/开启
    index.html0KbHTML139检视/开启
    On the distinguished eigenvalues of a cone-preserving map.pdf1401KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈