English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8161886      線上人數 : 54
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41378

    題名: On the distinguished eigenvalues of a cone-preserving map
    作者: Tam, Bit-Shun
    貢獻者: 淡江大學數學學系
    日期: 1990-04
    上傳時間: 2013-06-13 11:25:26 (UTC+8)
    出版者: Philadelphia: Elsevier Inc.
    摘要: We generalize many known results on a nonnegative matrix concerning linear inequalities, Collatz-Wielandt sets, and generalized eigenvectors to the setting of a matrix preserving a (finite-dimensional) proper cone. A simple cone-theoretic proof is given for the nonnegative-basis theorem for the algebraic eigenspace of a nonnegative matrix. The result is also extended to a matrix preserving a polyhedral cone. Given proper cones K1 and K2 in different euclidean spaces, a necessary and sufficient condition is also obtained for the existence of a nonzero matrix X which takes K2 into K1 and satisfies AX = XB, where A, B are given matrices preserving K1 and K2 respectively. This extends and answers a recent open question posed by Hartwig.
    關聯: Linear Algebra and Its Applications 131(C), pp.17-37
    DOI: 10.1016/0024-3795(90)90372-J
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數
    0024-3795_131(C)p17-37.pdf1401KbAdobe PDF112檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋