English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58317/91854 (63%)
造访人次 : 14001812      在线人数 : 209
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41373

    题名: All in the XL family : theory and practice
    其它题名: XL (延伸線性化) 類方法的理論和實際的探討
    作者: Yang, Bo-yin;Chen, Jiun-ming
    贡献者: 淡江大學數學學系
    关键词: algebraic analysis;finite field;Gröbner Bases;multivariate quadratics;multivariate cryptography;XL
    日期: 2005-04
    上传时间: 2010-01-28 07:24:44 (UTC+8)
    出版者: Berlin Heidelberg : Springer-Verlag GmbH
    摘要: The XL (eXtended Linearization) equation-solving algorithm belongs to the same extended family as the advanced Gröbner Bases methods F4/F5. XL and its relatives may be used as direct attacks against multivariate Public-Key Cryptosystems and as final stages for many “algebraic cryptanalysis” used today. We analyze the applicability and performance of XL and its relatives, particularly for generic systems of equations over medium-sized finite fields.

    In examining the extended family of Gröbner Bases and XL from theoretical, empirical and practical viewpoints, we add to the general understanding of equation-solving. Moreover, we give rigorous conditions for the successful termination of XL, Gröbner Bases methods and relatives. Thus we have a better grasp of how such algebraic attacks should be applied. We also compute revised security estimates for multivariate cryptosystems. For example, the schemes SFLASHv2 and HFE Challenge 2 are shown to be unbroken by XL variants.
    關聯: Lecture Notes in Computer Science 3506, pp.67-86
    DOI: 10.1007/11496618_7
    显示于类别:[數學學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    All in the XL Family Theory and Practice.pdf385KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈