English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91877 (63%)
造訪人次 : 14333131      線上人數 : 63
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41358


    題名: A comparison of the parameter estimating procedures for the michaelis-menten model
    作者: Tseng, Shio-jenn;Hus, Jyh-ping
    貢獻者: 淡江大學數學學系
    日期: 1990-08-23
    上傳時間: 2010-01-28 07:23:08 (UTC+8)
    出版者: London: Academic Press
    摘要: The performance of four parameter estimating procedures for the estimation of the adjustable parameters in the Michaelis-Menten model, the maximum initial rate Vmax, and the Michaelis-Menten constant Km, including Lineweaver & Burk transformation (L-B), Eadie & Hofstee transformation (E-H), Eisenthal & Cornish-Bowden transformation (ECB), and Hsu & Tseng random search (H-T) is compared. The analysis of the simulated data reveals the followings: (i) Vmax can be estimated more precisely than Km. (ii) the sum of square errors, from the smallest to the largest, follows the sequence H-T, E-H, ECB, L-B. (iii) Considering the sum of square errors, relative error, and computing time, the overall performance follows the sequence H-T, L-B, E-H, ECB, from the best to the worst. (iv) The performance of E-H and ECB are on the same level. (v) L-B and E-H are appropriate for pricesly measured data. H-T should be adopted for data whose error level are high. (vi) Increasing the number of data points has a positive effect on the performance of H-T, and a negative effect on the performance of L-B, E-H, and ECB.
    關聯: Journal of Theoretical Biology 145(4), pp.457-464
    DOI: 10.1016/S0022-5193(05)80481-3
    顯示於類別:[數學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML138檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋