English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55176/89442 (62%)
造访人次 : 10657958      在线人数 : 20
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41340


    题名: Exact linear inference for scaled exponentiol distribution based on doubly Type-II censored samples
    作者: 林千代;Lin, C. T.;Balakrishnan, N.
    贡献者: 淡江大學數學學系
    关键词: Order statistics;spacings;Dirichlet distribution;Uniform distribution;Exponential distribution;Best linear unbiased estimator;Doubly Type-II censored sample;MAPLE program
    Order statistics;spacings;Dirichlet distribution;Uniform distribution;Exponential distribution;Best linear unbiased estimator;Doubly Type-II censored sample;MAPLE program
    日期: 2001-12
    上传时间: 2010-01-28 07:20:46 (UTC+8)
    出版者: Taylor & Francis
    摘要: In this paper, we make use of an algorithm of Huffer and Lin (2000) in order to develop exact interval estimation for the scale parameter to of an exponential distribution based on doubly Type-II censored samples. We also evaluate the accuracy of a chi-square approximation proposed by Balakrishnan and Gupta (1998). We present the MAPLE program for the determination of the exact percentage points of the pivotal quantity based on the best linear unbiased estimator. Finally, we present a couple of examples to illustrate the method of inference developed here.
    關聯: Journal of Statistical Computation and Simulation 71(3), pp.183-199
    DOI: 10.1080/00949650108812142
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Exact linear inference for scaled exponentiol distribution based on doubly Type-II censored samples.pdf1410KbAdobe PDF0检视/开启
    index.html0KbHTML47检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈