English  |  正體中文  |  简体中文  |  Items with full text/Total items : 60868/93650 (65%)
Visitors : 1151713      Online Users : 26
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/41319


    Title: A continuation and existence result for a boundary value problem on an unbounded domain arising for the electrical potential in a cylindrical double layer
    Authors: Appell, Jurgen;Chen, Chur-jen;曾琇瑱;Tseng, Shio-jenn;Martin, Vaeth
    Contributors: 淡江大學數學學系
    Keywords: Poisson–Boltzmann equation;Electric potential distribution;Contraction mapping principle;Continuation theorem;Leray–Schauder alternative;Modified Bessel functions;Weighted function space
    Date: 2007-08-15
    Issue Date: 2010-01-28 07:18:04 (UTC+8)
    Publisher: Elsevier
    Abstract: Using a continuation theorem for contractions, the existence, uniqueness, and an approximation method for a class of nonlinear boundary value problems on an unbounded interval is obtained. The results apply in particular to the problem in the title.
    Relation: Journal of Mathematical Analysis and Applications 332(2), pp.1134-1147
    DOI: 10.1016/j.jmaa.2006.11.013
    Appears in Collections:[Graduate Institute & Department of Mathematics] Journal Article

    Files in This Item:

    File Description SizeFormat
    A continuation and existence result for a boundary value problem on an unbounded domain arising for the electrical potential in a cylindrical double layer.pdf164KbAdobe PDF1View/Open
    index.html0KbHTML274View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback