淡江大學機構典藏:Item 987654321/41295
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10773686      在线人数 : 20265
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/41295


    题名: A random version of shepp's urn scheme
    作者: Chen, Robert W.;Zame, Alan;林千代;Lin, Chien-tai;吳秀芬;Wu, Hsiu-fen
    贡献者: 淡江大學數學學系
    关键词: urn scheme;optimal drawing policy;random coin tossing process;stopping time;the “k” in the hole policy
    日期: 2005-06
    上传时间: 2010-01-28 07:12:59 (UTC+8)
    出版者: Philadelphia: Society for Industrial and Applied Mathematics (SIAM)
    摘要: In this paper, we consider the following random version of Shepp’s urn scheme: A
    player is given an urn with n balls. p of these balls have value +1 and n − p have value −1. The player is allowed to draw balls randomly, without replacement, until he or she wants to stop. The player knows n, the total number of balls, but knows only that p, the number of balls of value +1, is a number selected randomly from the set {0,1,2,...,n}. The player wishes to maximize the expected value of the sum of the balls drawn. We first derive the player’s optimal drawing policy and an algorithm to compute the player’s expected value at the stopping time when he or she uses the optimal drawing policy. Since the optimal drawing policy is rather intricate and the computation of the player’s optimal expected value is quite cumbersome, we present a very simple drawing policy, which is asymptotically optimal. We also show that this random urn scheme is equivalent to a random coin tossing problem.
    關聯: Siam Journal on Discrete Mathematics 19(1), pp.149-164
    DOI: 10.1137/S0895480102418099
    显示于类别:[應用數學與數據科學學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0895-4801_19(1)p149-164.pdf196KbAdobe PDF837检视/开启
    index.html0KbHTML129检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈