淡江大學機構典藏:Item 987654321/41283
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9369940      在线人数 : 14244
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/41283


    题名: Numerical Schubert Calculus by the Pieri Homotopy Algorithm
    作者: Li, Tien-yien;Wang, Xiaoshen;吳孟年;Wu, Meng-nien
    贡献者: 淡江大學數學學系
    关键词: enumerative geometry;Schubert variety;Pieri formula;Pieri homotopy algorithm;Pieri poset
    日期: 2003
    上传时间: 2010-01-28 07:10:48 (UTC+8)
    出版者: Philadelphia: Society for Industrial and Applied Mathematics (SIAM)
    摘要: Based on Pieri's formula on Schubert varieties, the Pieri homotopy algorithm was first proposed by Huber, Sottile, and Sturmfels [J. Symbolic Comput., 26 (1998), pp. 767-788] for numerical Schubert calculus to enumerate all p-planes in Cm+p that meet n given planes in general position. The algorithm has been improved by Huber and Verschelde [SIAM J. Control Optim., 38 (2000), pp. 1265-1287] to be more intuitive and more suitable for computer implementations. A different approach of employing the Pieri homotopy algorithm for numerical Schubert calculus is presented in this paper. A major advantage of our method is that the polynomial equations in the process are all square systems admitting the same number of equations and unknowns. Moreover, the degree of each polynomial equation is always 2, which warrants much better numerical stability when the solutions are being solved. Numerical results for a big variety of examples illustrate that a considerable advance in speed as well as much smaller storage requirements have been achieved by the resulting algorithm.
    關聯: Siam Journal on Numerical Analysis 40(2), pp.578-600
    DOI: 10.1137/S003614290139175X
    显示于类别:[應用數學與數據科學學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0036-1429_40(2)p578-600.pdf539KbAdobe PDF991检视/开启
    index.html0KbHTML221检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈