English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 59131/92571 (64%)
造訪人次 : 735846      線上人數 : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41283

    題名: Numerical Schubert Calculus by the Pieri Homotopy Algorithm
    作者: Li, Tien-yien;Wang, Xiaoshen;吳孟年;Wu, Meng-nien
    貢獻者: 淡江大學數學學系
    關鍵詞: enumerative geometry;Schubert variety;Pieri formula;Pieri homotopy algorithm;Pieri poset
    日期: 2003
    上傳時間: 2010-01-28 07:10:48 (UTC+8)
    出版者: Philadelphia: Society for Industrial and Applied Mathematics (SIAM)
    摘要: Based on Pieri's formula on Schubert varieties, the Pieri homotopy algorithm was first proposed by Huber, Sottile, and Sturmfels [J. Symbolic Comput., 26 (1998), pp. 767-788] for numerical Schubert calculus to enumerate all p-planes in Cm+p that meet n given planes in general position. The algorithm has been improved by Huber and Verschelde [SIAM J. Control Optim., 38 (2000), pp. 1265-1287] to be more intuitive and more suitable for computer implementations. A different approach of employing the Pieri homotopy algorithm for numerical Schubert calculus is presented in this paper. A major advantage of our method is that the polynomial equations in the process are all square systems admitting the same number of equations and unknowns. Moreover, the degree of each polynomial equation is always 2, which warrants much better numerical stability when the solutions are being solved. Numerical results for a big variety of examples illustrate that a considerable advance in speed as well as much smaller storage requirements have been achieved by the resulting algorithm.
    關聯: Siam Journal on Numerical Analysis 40(2), pp.578-600
    DOI: 10.1137/S003614290139175X
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0036-1429_40(2)p578-600.pdf539KbAdobe PDF888檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋