淡江大學機構典藏:Item 987654321/41270
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96959 (66%)
造訪人次 : 11547794      線上人數 : 22563
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/41270


    題名: Exact prediction intervals for exponential distributions based on doubly Type-II censored samples
    作者: 林千代;Lin, Chien-tai;Balakrishnan, N.
    貢獻者: 淡江大學數學學系
    日期: 2003-08
    上傳時間: 2010-01-28 07:08:18 (UTC+8)
    出版者: Taylor & Francis
    摘要: In this paper, we make use of an algorithm of Huffer & Lin (2001) in order to develop exact prediction intervals for failure times from one-parameter and two- parameter exponential distributions based on doubly Type-II censored samples. We show that this method yields the same results as those of Lawless (1971, 1977) and Like w (1974) in the case when the available sample is Type-II right censored. We present a computational algorithm for the determination of the exact percentage points of the pivotal quantities used in the construction of these prediction intervals. We also present some tables of these percentage points for the prediction of the ’ th order statistic in a sample of size n for both one- and two-parameter exponential distributions, assuming that the available sample is doubly Type-II censored. Finally, we present two examples to illustrate the methods of inference developed here.
    關聯: Journal of Applied Statistics 30(7), pp.783-801
    DOI: 10.1080/0266476032000076056
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Exact prediction intervals for exponential distributions based on doubly Type-II censored samples.pdf327KbAdobe PDF2檢視/開啟
    index.html0KbHTML387檢視/開啟
    index.html0KbHTML257檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋