English  |  正體中文  |  简体中文  |  Items with full text/Total items : 56552/90363 (63%)
Visitors : 11821375      Online Users : 128
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41265

    Title: Efficient generation of the ring of invariants
    Authors: 胡守仁;Hu, Shou-jen;Kang, Ming-chang
    Contributors: 淡江大學數學學系
    Date: 1996-03-01
    Issue Date: 2010-01-28 07:07:58 (UTC+8)
    Publisher: Elsevier
    Abstract: We shall use the Binet–Minc formula in the theory of permanents to prove David Richman's theorem: LetGbe a finite group acting onA≔R[a1,…, ar], whereRis any commutative ring with 1/|G|!∈R. Then the ring of invariantsAGis generated overRby ∑σ∈Gσ(aα11aα22···aαrr), where α1+···+αr⩽|G|. Applications of permanents to other problems related to invariants are given also.
    Relation: Journal of Algebra 180(2), pp.341-363
    DOI: 10.1006/jabr.1996.0071
    Appears in Collections:[Graduate Institute & Department of Mathematics] Journal Article

    Files in This Item:

    File Description SizeFormat
    Efficient generation of the ring of invariants.pdf171KbAdobe PDF0View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback