English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51896/87052 (60%)
Visitors : 8465400      Online Users : 311
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41262

    Title: An inverse nodal problem for vectorial Sturm-Liouville equations
    Authors: Shen, Chao-liang;謝忠村;Shieh, Chung-tsun
    Contributors: 淡江大學數學學系
    Date: 2000-04
    Issue Date: 2010-01-28 07:07:47 (UTC+8)
    Publisher: Institute of Physics (IOP)
    Abstract: Let P (x) denote a 2 × 2 symmetric matrix-valued function defined on [0, 1]. We
    prove that if there exists an infinite sequence {y(x; λnj )}∞
    j=1 of Dirichlet eigenfunctions of the
    operator − d2
    dx2 + P (x) whose components all have zeros in common, then P (x) is simultaneously
    diagonalizable on [0, 1]. This result can also be generalized to the general n-dimensional case.
    Relation: Inverse Problems 16(2), pp.349-356
    DOI: 10.1088/0266-5611/16/2/306
    Appears in Collections:[數學學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback