English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91867 (63%)
造訪人次 : 14038490      線上人數 : 97
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41257

    題名: Generalized Wiener indices in hexagonal chains
    其他題名: 計算六角環鍊的推廣 Wiener 指數
    作者: 游森棚;Eu, Sen-peng;楊柏因;Yang, Bo-yin;葉永南;Yeh, Yeong-nan
    貢獻者: 淡江大學數學學系
    日期: 2006-01-01
    上傳時間: 2010-01-28 07:06:07 (UTC+8)
    出版者: Wiley-Blackwell
    摘要: The Wiener index, or the Wiener number, also known as the “sum of distances” of a connected graph, is one of the quantities associated with a molecular graph that correlates nicely to physical and chemical properties, and has been studied in depth. An index proposed by Schultz is shown to be related to the Wiener index for trees, and Ivan Gutman proposed a modification of the Schultz index with similar properties. We deduce a similar relationship between these three indices for catacondensed benzenoid hydrocarbons (graphs formed of concatenated hexagons, or hexagonal chains, or sometimes acenes). Indeed, we may define three families of generalized Wiener indices, which include the Schultz and Modified Schultz indices as special cases, such that similar explicit formulae for all generalized Wiener indices hold on hexagonal chains. We accomplish this by first giving a more refined proof of the formula for the standard Wiener index of a hexagonal chain, then extending it to the generalized Wiener indices via the notion of partial Wiener indices. Finally, we discuss possible extensions of the result.
    關聯: International Journal of Quantum Chemistry 106(2), pp.426-435
    DOI: 10.1002/qua.20732
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Generalized Wiener indices in hexagonal chains.pdf289KbAdobe PDF0檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋