English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91867 (63%)
造访人次 : 14038470      在线人数 : 92
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41250

    题名: A comparison of two simple prediction intervals for exponential distribution
    作者: Balakrishnan, N.;Chan, P. S.;林千代;Lin, Chien-tai
    贡献者: 淡江大學數學學系
    关键词: Best linear unbiased estimator (BLUE);Exponential distribution;Maximum likelihood estimator (MLE);Order statistics;Pivotal quantities;Prediction intervals;Spacings;Type-II right censored sample
    日期: 2005-03
    上传时间: 2010-01-28 07:04:31 (UTC+8)
    出版者: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: The prediction intervals proposed by J. F. Lawless (1971) and G. S. Lingappaiah (1973) for the exponential distribution are both simple to use. In this note, we make a comparison of these two prediction intervals based on the expected width of the prediction interval, as well as by means of the probability of the width of one being smaller than the other. For the computation of the latter, we use an algorithm, which is described briefly in the Appendix. Numerical results of these comparisons are presented for different choices of the parameters involved. Both these comparisons reveal that the prediction interval in is better than that in in that it has smaller expected width, as well as higher probability of having smaller width. Finally, we present an example to illustrate the results discussed in this paper.
    關聯: Ieee Transactions on Reliability 54(1), pp.27-33
    DOI: 10.1109/TR.2004.841727
    显示于类别:[數學學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    A comparison of two simple prediction intervals for exponential distribution.pdf775KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈