淡江大學機構典藏:Item 987654321/41237
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9417914      線上人數 : 9754
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/41237


    題名: Equilibria of pairs of nonlinear maps associated with cones
    作者: Barker, George P.;Neumann-coto, Max;Schneider, Hans;Takane, Martha;譚必信;Tam, Bit-shun
    貢獻者: 淡江大學數學學系
    關鍵詞: Proper cone;convex set;nonlinear map;equilibrium point;Ky Fan;Borsuk-Ulam
    日期: 2005-03
    上傳時間: 2010-01-28 07:02:46 (UTC+8)
    出版者: Springer
    摘要: Let K1, K2 be closed, full, pointed convex cones in finite-dimensional real vector spaces of the same dimension, and let F : K1 → span K2 be a homogeneous, continuous, K2-convex map that satisfies F(∂K1) ∩ int K2=∅ and FK1 ∩ int K2 ≠ ∅. Using an equivalent formulation of the Borsuk-Ulam theorem in algebraic topology, we show that we have F(K1∖{0})∩(−K2)=∅F(K1∖{0})∩(−K2)=∅ and K2⊆FK1.K2⊆FK1. We also prove that if, in addition, G : K1 → span K2 is any homogeneous, continuous map which is (K1, K2)-positive and K2-concave, then there exist a unique real scalar ω0 and a (up to scalar multiples) unique nonzero vector x0 ∈ K1 such that Gx0 = ω0Fx0, and moreover we have ω0 > 0 and x0 ∈ int K1 and we also have a characterization of the scalar ω0. Then, we reformulate the above result in the setting when K1 is replaced by a compact convex set and recapture a classical result of Ky Fan on the equilibrium value of a finite system of convex and concave functions.
    關聯: Integral Equations and Operator Theory 51(3), pp.357-373
    DOI: 10.1007/s00020-003-1259-3
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Equilibria of pairs of nonlinear maps associated with cones.pdf243KbAdobe PDF1檢視/開啟
    index.html0KbHTML260檢視/開啟
    index.html0KbHTML194檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋