English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55221/89519 (62%)
造訪人次 : 10721271      線上人數 : 25
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/41200


    題名: A Note on Model Diagnostics in Longitudinal Data Analysis
    作者: Yang, Kung-han;張玉坤;Chang, Yue-cune
    貢獻者: 淡江大學數學學系
    關鍵詞: Test for randomness;Model;diagnostic;Longitudinal;data;analysis;Generalized estimating equations Random effects models
    日期: 2006-11
    上傳時間: 2010-01-28 06:55:33 (UTC+8)
    出版者: Springer
    摘要: Longitudinal study has become one of the most commonly adopted designs in medical research. The generalized estimating equations (GEE) method and/or mixed effects models are employed very often in causal inferences. The related model diagnostic procedures are not yet fully formalized, and perhaps never will be. The potential causes of major problems are the high variety of the dependence within subjects and/or the number of repeated measurements. A single testing procedure, e.g., run test, is not possible to resolve all model diagnostics problems in longitudinal data analysis. Multiple quantitative indexes for model diagnostics are needed to take into account this variety. We propose eight testing procedures for randomness accompanied with some conventional and/or non-conventional plots to remedy model diagnostics in longitudinal data analysis. The proposed issue in this paper is well illustrated with four clinical studies in Taiwan.
    關聯: Computational Statistics 21(3-4), pp.571-587
    DOI: 10.1007/s00180-006-0015-y
    顯示於類別:[數學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    A Note on Model Diagnostics in Longitudinal Data Analysis.pdf470KbAdobe PDF0檢視/開啟
    index.html0KbHTML190檢視/開啟
    index.html0KbHTML58檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋