淡江大學機構典藏:Item 987654321/39012
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58617/92280 (64%)
造访人次 : 562873      在线人数 : 82
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/39012


    题名: Rule extraction using a novel class of fuzzy degraded hyperellipsoidal composite neural networks
    作者: Su, Mu-chun;Kao, Chien-jen;Liu, Kai-ming;Liu, Chi-yeh
    贡献者: 淡江大學電機工程學系
    日期: 1995-03-20
    上传时间: 2010-04-15 11:13:17 (UTC+8)
    出版者: N.Y.: Institute of Electrical and Electronic Engineers (IEEE)
    摘要: Presents an innovative approach to rule extraction directly from experimental numerical data for system identification. The authors discuss how to use a novel class of fuzzy degraded hyperellipsoidal composite neural networks (FDHECNN's) to extract fuzzy if-then rules. The fuzzy rules are defined by hyperellipsoids of which principal axes are parallel to the coordinates of the input space. These rules are extracted from the parameters of the trained FDHECNN's. Based on a special learning scheme, the FDHECNN's can evolve automatically to acquire a set of fuzzy rules for approximating the input/output functions considered systems. A highly nonlinear system is used to test the proposed neuro-fuzzy systems.
    關聯: Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium., Proceedings of 1995 IEEE Int (Volume:1 ), pp.233-238
    DOI: 10.1109/FUZZY.1995.409686
    显示于类别:[電機工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML338检视/开启
    Rule extraction using a novel class of fuzzy degraded hyperellipsoidal composite neural networks.pdf352KbAdobe PDF234检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈