English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 63183/95881 (66%)
造访人次 : 4370894      在线人数 : 164
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/38804

    题名: Design of sliding mode power system stabilizer via genetic algorithm
    其它题名: 使用基因演算法之滑動模式電力系統穩定器設計
    作者: Huang, Tsong-liang;Chang, Chih-han;Lee, Ju-lin;Wang, Hui-mei
    贡献者: 淡江大學電機工程學系
    关键词: PSS;Sliding Mode;Genetic Algorithm
    日期: 2003-07-16
    上传时间: 2010-04-15 11:23:09 (UTC+8)
    出版者: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: This paper proposes a new approach for combining genetic algorithm and sliding mode control to design the power system stabilizers (PSS). The design of a PSS can be formulated as an optimal linear regulator control problem. However, implementing this technique requires the design of estimators. This increases the implementation and reduces the reliability of control system. These reasons, therefore, favor a control scheme that uses only some desired state variables, such as torque angle and speed. To deal with this problem, we use the optimal reduced models to reduce the power system model into two state variables system by each generator. We use the genetic algorithm to find the switching control signals and use sliding mode control to find control signal of the generator. The advantages of the proposed method are illustrated by numerical simulation of the multi-machine power systems.
    關聯: Computational Intelligence in Robotics and Automation, 2003. Proceedings. 2003 IEEE International Symposium on (Volume:2 ), pp.515-520
    DOI: 10.1109/CIRA.2003.1222234
    显示于类别:[電機工程學系暨研究所] 會議論文


    档案 描述 大小格式浏览次数
    0780378660_2p515-520.pdf252KbAdobe PDF686检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈