English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55178/89446 (62%)
造訪人次 : 10661236      線上人數 : 22
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/38703

    題名: K-means-based fuzzy classifier design
    作者: 翁慶昌;Wong, Ching-chang;Chen, Chia-chong;Yeh, Shih-liang
    貢獻者: 淡江大學電機工程學系
    日期: 2000-05-07
    上傳時間: 2010-04-15 11:35:38 (UTC+8)
    出版者: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: In this paper, a method based on the K-means algorithm is proposed to efficiently design a fuzzy classifier so that the training patterns can be correctly classified by the proposed approach. In this method, the K-means algorithm is first used to partition the training data for each class into several clusters, and the cluster center and the radius for each cluster are calculated. Then, a fuzzy system design method that uses a fuzzy rule to represent a cluster is proposed such that a fuzzy classifier can be efficiently constructed to correctly classify the training data. The proposed method has the following features: 1) it does not need prior parameter definition; 2) it only needs a short training time; and 3) it is simple. Finally, two examples are used to illustrate and examine the proposed method for the fuzzy classifier design
    關聯: Fuzzy Systems, 2000. FUZZ IEEE 2000. The Ninth IEEE International Conference on (Volume:1 ), pp.48-52
    DOI: 10.1109/FUZZY.2000.838632
    顯示於類別:[電機工程學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    0780358775_1p48-52.pdf351KbAdobe PDF701檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋