English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56738/90513 (63%)
造訪人次 : 12091001      線上人數 : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/38625

    題名: Particle swarm optimization algorithm and its application to clustering analysis
    作者: Chen, Ching-yi;Ye, Fun
    貢獻者: 淡江大學電機工程學系
    日期: 2004
    上傳時間: 2010-04-15 11:05:04 (UTC+8)
    出版者: N.Y.: IEEE (Institute of Electrical and Electronic Engineers)
    摘要: Clustering analysis is applied generally to pattern recognition, color quantization and image classification. It can help the user to distinguish the structure of data and simplify the complexity of data from mass information. The user can understand the implied information behind extracting these data. In real case, the distribution of information can be any size and shape. A particle swarm optimization algorithm-based technique, called PSO-clustering, is proposed in this article. We adopt the particle swarm optimization to search the cluster center in the arbitrary data set automatically. PSO can search the best solution from the probability option of the social-only model and cognition-only model. This method is quite simple and valid, and it can avoid the minimum local value. Finally, the effectiveness of the PSO-clustering is demonstrated on four artificial data sets.
    關聯: 2004 IEEE International Conference on Networking, Sensing and Control, 2, pp.789-794
    DOI: 10.1109/ICNSC.2004.1297047
    顯示於類別:[電機工程學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    Particle swarm optimization algorithm and its application to clustering analysis.pdf297KbAdobe PDF1089檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋