English  |  正體中文  |  简体中文  |  Items with full text/Total items : 63150/95881 (66%)
Visitors : 4355374      Online Users : 139
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/38291

    Title: 衝擊流中紊流產生器對熱傳及流場特性探討
    Other Titles: Heat Transfer and Flow Characteristics in Impinging Flows with Turbulators
    Authors: 陳增源;Chen, Tseng-yuan
    Contributors: 淡江大學航空太空工程學系
    Keywords: 熱傳;衝擊流;渦流產生器;Heat transfer;Impinging flow;Turbulator
    Date: 2003-12
    Issue Date: 2010-01-11 15:02:19 (UTC+8)
    Publisher: 成功大學
    Abstract: 本研究實驗探討衝擊流中,紊流產生器對流場結構及熱傳之影響。衝擊流特性係
    利用一7*7cm/sup 2/管道,其一端連接一風洞系統,在管道入口產生一均勻流,
    而管道另一端中央置有一垂直於流場、4*4cm/sup 2/之加熱板,用來當作熱傳面
    面之溫度由熱電偶絲(Thermocouple)量測,藉以獲得Nusselt number。實驗結
    The flow and heat transfer characteristics in impinging flows with
    turbulators were experimentally investigated. A uniform flow was
    generated at the inlet of a 7*7cm/sup 2/ duct by a wind tunnel, and a
    4*4cm/sup 2/ heat transfer plate was placed at the other end of the
    duct for heat transfer surface, perpendicular to the incoming flow. A
    Pair of turbulator was mounted on the left and right duct walls near
    the inlet of the duct, which included rectangular-plate and
    triangular-plate turbulators, 45° and 90° angle of attack. The
    studies included three-component mean and fluctuating velocity
    measurements at duct axial cross-section and near the heat transfer
    surface using laser Doppler velocimetry. The axial vorticity,
    turbulent kinetic energy and axial mean velocity near the heat
    transfer surface were obtained from the measured velocity data. The
    temperatures on the heat transfer surface were measured using type-T
    thermocouples to obtain the Nusselt numbers. Results show that the
    turbulators in impinging flows have the effect to increase the axial
    vorticity, turbulent kinetic energy and averaged axial mean velocity
    and, thus, to augment the heat transfer. The heat transfer
    augmentation increases with increasing Reynolds numbers, and the 90°
    rectangular-plate turbulator causes the largest heat transfer
    augmentation among the investigated turbulators.
    Relation: 2003年中國航空太空學會/中華民用航空學會暨國科會航太學門研究成果發表會暨教育部九十二年度航太科技教育改進計畫成果發表會論文集(下冊),頁1334-1340
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Proceeding

    Files in This Item:

    File Description SizeFormat
    衝擊流中紊流產生器對熱傳及流場特性探討_中文摘要.docx摘要14KbMicrosoft Word210View/Open
    衝擊流中紊流產生器對熱傳及流場特性探討_西文摘要.docx摘要14KbMicrosoft Word110View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback