English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51296/86402 (59%)
Visitors : 8158175      Online Users : 47
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/38128


    Title: 多孔彈性平板之動態反應
    Other Titles: Dynamic response of poroelastic slab
    Authors: 蔡慧錫;葉豐輝
    Contributors: 淡江大學機械與機電工程學系
    Keywords: 多孔彈性平板;動態反應;勁度函數;表面邊界條件;有限元素法;平板長度;位移;頻率響應函數;阻尼;動態傳輸函數;Poroelastic Slab;Dynamic Response;Stiffness Function;Surface Boundary Condition;Finite Element Method;Slab Length;Displacement;Frequency Response Function;Damping;Dynamic Transfer Function
    Date: 1993-12
    Issue Date: 2010-01-11 14:44:21 (UTC+8)
    Abstract: 本文應用Biot的完全動態多孔彈性方程組 推導出一多孔彈性平板的複數動態勁度函數, 並用以探求忽略平板厚度分析結果的適用範圍 。此外不同的表面邊界條件對複數動態勁度函 數的影響亦被深入探討。平板長度厚度比及能 量耗損係數對複數動態勁度的改變亦被系統化 的表示出來。 文中以固體及液體位移函數表示的Biot完 全動態多孔彈性方程組首先被轉換至拉普拉氏 區域。進而應用Galerkin型態有限元素法,採任意 四邊形元素推導出方程組的有限元素剛性矩陣 。平板的動態傳輸函數則由一施於平板上表面 的衝擊位移及表面反應力解析而得。平板側平 面可穿透性及不可穿透性兩種狀態的結果將被 考量。最後代表著平板勁度及阻尼意義的動態 傳輸函數被表示於頻率區域或稱之複數動態勁 度函數。各式參數對此一函數的影響將被充分 的討論。
    This paper derives a complex dynamic stiffness function for a poroelastic slab and uses this to examine the range of validity of solutions to Biot's dynamic poroelasticity equations when the transverse displacement is independent of the slab length. It also examines the effects of surface boundary conditions on the solutions to the equations and presents systematic studies of the effects of the slab length to thickness ratio and of the dissipation terms on the slab's storage and loss moduli. Biot's equations of poroelasticity are first phrased in terms of solid and fluid displacements and then transformed into the Laplace domain. The Galerkin type finite element method is proposed to solve these equations. With the use of a general quadrilateral element, the stiffness matrix for this method is then derived. The dynamic transfer functions are then obtained for the case of an impulsive displacement applied to the top surface of the slab. Cases of both permeable and impermeable side surfaces are considered. The resulting solutions for the Laplace transform of the impulsive excitation response are then transformed into the frequency domain complex response functions, called dynamic stiffness functions, which characterized the stiffness and damping of the layer. Parametric studies are then carried out employing these complex frequency response functions.
    Relation: 中華民國力學學會第十七屆全國力學會議論文集(下)=Proceedings of the 17th National Conference on Theoretical and Applied Mechanics(II),頁1005-1012
    Appears in Collections:[機械與機電工程學系暨研究所] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML102View/Open
    多孔彈性平板之動態反應_中文摘要.docx摘要13KbMicrosoft Word124View/Open
    多孔彈性平板之動態反應_英文摘要.docx摘要13KbMicrosoft Word54View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback