English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54907/89265 (62%)
造访人次 : 10600417      在线人数 : 22
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/37525


    题名: A knowledge-based approach to supervised incremental learning
    作者: Fu, Li-min;Hsu, Hui-huang;Principe, Jose C.
    贡献者: 淡江大學資訊工程學系
    日期: 1994-06-27
    上传时间: 2010-04-15 09:45:51 (UTC+8)
    出版者: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: How to learn new knowledge without forgetting old knowledge is a key issue in designing an incremental-learning neural network. In this paper, we present a rule-based connectionist approach in which old knowledge is preserved by bounding weight modifications. In addition, some heuristics are developed for avoiding overtraining of the network and adding new hidden units. The feasibility of this approach is demonstrated for classification problems including the iris and the promoter domains.
    關聯: Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on, vol.3, pp.1793-1798
    DOI: 10.1109/ICNN.1994.374428
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    078031901X_3p1793-1798.pdf393KbAdobe PDF558检视/开启
    index.html0KbHTML163检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈