English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8154159      Online Users : 7484
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35990


    Title: 臺灣地區不同土地使用形態對氣象模式模擬結果的影響
    Other Titles: The effects of land-use data on the simulation of meteorological model in Taiwan
    台灣地區不同土地使用形態對氣象模式模擬結果的影響
    Authors: 潘雲潔;Pan, Yun-chieh
    Contributors: 淡江大學水資源及環境工程學系碩士班
    江旭程;Chiang, Hsu-cherng
    Keywords: 土地使用型態;中尺度氣象模式;地表粗糙度;land-use;mesoscale meteorology model;roughness length
    Date: 2008
    Issue Date: 2010-01-11 07:26:15 (UTC+8)
    Abstract: 在中尺度氣象模擬中常需使用土地分類資料和各類土地的地表參數,然而詳細的土地使用資料不易取得,過去RAMS模式常利用AVHRR遙測資料所推求的GLCC(全球土地覆蓋特性資料)作為其預設的輸入資料,然而GLCC所使用的遙測資料不但較舊,解析度較低,而且對都市地區的判讀較不準確。現今更新的全球土地使用資料庫是MOD12Q1地表覆蓋資料庫, MODIS的遙測資料不但較新,且具有較高的解析度,其分類演算法也較準確。在本研究中我們發現這兩個資料集在台灣有很大的差異,MODIS的都市範圍比GLCC大許多,如果和台灣人口分佈,建築物面積比較,也發現MODIS的資料較為合理。除了地表分類資料外,我們也發現不同地表參數也會對模式模擬的結果產生影響,尤其是在都市地面粗糙度上,RAMS所設定的地面粗糙度過低,與台灣都市建築物高度有很大的出入。因此,本研究除了比較兩種不同土地使用資料對RAMS模式模擬結果影響,也針對修正地面粗糙度後的模擬結果進行探討。
    變更土地使用資料後,台灣西部沿岸的都市幅員大幅度增加,在地面氣象場模擬結果中,可以發現地表類型為都市與農田兩者間之溫度差異約在2℃左右,且都市空氣中水氣含量較農田降低了0.002 kg/kg-air,都市熱島效應非常顯著。而提升RAMS的都市地面粗糙度,在風速的模擬上有良好的結果,地面風速減弱3m/s,模擬值與實測值大幅度的趨近。
    The land use dataset and surface parameters for different land categories are important inputs for mesoscale meteorological models. The Global Land Cover Characterization (GLCC) dataset generated form AVHRR data were widely used by mesoscale meteorological models such as RAMS. However, the GLCC data have several drawbacks. They are of out of date, low resolution, and inaccurate, especially for urban classification. Another newer dataset is MOD12Q1. This dataset uses new data, has higher resolution and more accurate classification for urban area. There are significant differences between these two dataset for Taiwan area. The urban areas in MODIS dataset are much larger than that of GLCC dataset. When compare with the distributions of population and building density in Taiwan, it is found that MODIS dataset is more reasonable. We also noted that the surface parameters, especially surface roughness, are important for urban meteorological simulation. Since the buildings are higher in Taiwan area, the default setting of surface roughness in RAMS is too low when it was used in Taiwan. In this study, we investigate the effects of different land use dataset and urban roughness on the results of meteorological simulations.
    When the MODIS dataset was used, the surface temperatures in urban areas increased about 2℃ and the water contents in urban areas decreased about 2g/kg-air. Significant urban heat island effects were noted. If the surface roughness were increased, the surface wind speeds may decrease 3m/s in urban areas and have better agreement when compared with observations.
    Appears in Collections:[水資源及環境工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown256View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback